$(\Omega$ -)Provably Δ_1 Games

J. P. Aguilera

TU Vienna

Mexico City, January 2018

J. P. Aguilera (TU Vienna)

(Ω -)Provably Δ_1 Games

Mexico City, January 2018 1 / 26

Image: Image:

э

Joint work with Doug Blue.

2

Theorem

Suppose there is an iterable proper class inner model of ZFC with a measurable Woodin cardinal $\delta < \omega_1^V$ and let $A \subset 2^{\omega_1}$ be Δ_1 , provably in ZFC. Then A is determined.

Theorem

Suppose there is an iterable proper class inner model of ZFC with a measurable Woodin cardinal $\delta < \omega_1^V$ and let $A \subset 2^{\omega_1}$ be Δ_1 , provably in ZFC. Then A is determined.

Theorem

Suppose there is an iterable proper class inner model of ZFC with a measurable Woodin cardinal $\delta < \omega_1^V$ and that the Continuum Hypothesis holds. Let $A \subset 2^{\omega_1}$ be $\Delta_1(\mathbb{R})$, provably in ZFC. Then A is determined.

In contrast,

Theorem (Larson)

Suppose Martin's Maximum holds. Then, there is a non-determined Σ_1 subset of 2^{ω_1} .

In contrast,

Theorem (Larson)

Suppose Martin's Maximum holds. Then, there is a non-determined Σ_1 subset of 2^{ω_1} .

However,

Theorem (Woodin)

If there is a Woodin cardinal which is a limit of Woodin cardinals, then there is a model M of ZFC in which all definable subsets of $(2^{\omega_1})^M$ are determined.

4 / 26

3

• By Gödel's completeness theorem, a formula ϕ is provable (in first-order logic) if, and only if, it holds in every structure.

- By Gödel's completeness theorem, a formula ϕ is provable (in first-order logic) if, and only if, it holds in every structure.
- Generalized logics can be obtained by restricting the class of models in which we search for validity.

- By Gödel's completeness theorem, a formula ϕ is provable (in first-order logic) if, and only if, it holds in every structure.
- Generalized logics can be obtained by restricting the class of models in which we search for validity.
- Ω -Logic is the logic of the generic multiverse.

- By Gödel's completeness theorem, a formula ϕ is provable (in first-order logic) if, and only if, it holds in every structure.
- Generalized logics can be obtained by restricting the class of models in which we search for validity.
- Ω-Logic is the logic of the generic multiverse.

Definition

If ϕ is a formula and T is a theory, we write $T \models_{\Omega} \phi$ if for all generic extensions V[g] of V and all ordinals α ,

$$V^{V[g]}_{\alpha} \models T$$
 implies $V^{V[g]}_{\alpha} \models \phi$.

The notion of Ω -satisfiability is accompanied by a corresponding notion of Ω -provability. Proofs in Ω -logic are not coded by natural numbers, but by universally Baire sets of reals.

The notion of Ω -satisfiability is accompanied by a corresponding notion of Ω -provability. Proofs in Ω -logic are not coded by natural numbers, but by universally Baire sets of reals.

Definition

A set $A \subset \mathbb{R}$ is universally Baire if for every compact Hausdorff space Xand every continuous $f : X \to \mathbb{R}$, $f^{-1}[A]$ has the property of Baire (i.e., it differs from an open set by a meager set). We denote by Γ^{∞} the class of all universally Baire sets. **1** If T is a tree on $\omega \times \kappa$, we write

 $p[T] = \{x \in \mathbb{R} : \forall n \in \mathbb{N} \exists f \in \kappa^{\omega} (x \upharpoonright n, f \upharpoonright n) \in T\}.$

Theorem (Feng-Magidor-Woodin)

Let $A \subset \mathbb{R}$. The following are equivalent:

- A is universally Baire;
- For every cardinal κ, there exist some ordinal λ and a pair of trees T, S on ω × λ such that A = p[T] and

$$p[T] = \mathbb{R} \setminus p[S]$$

in every forcing extension by a partial order of size $< \kappa$.

7 / 26

• Suppose A is universally Baire. Then A has a canonical interpretation in every generic extension.

- Suppose A is universally Baire. Then A has a canonical interpretation in every generic extension.
- Let g be generic, we write

$$A_g = \bigcup \{ p[T]^{V[g]} : A = p[T]^V \}.$$

- Suppose A is universally Baire. Then A has a canonical interpretation in every generic extension.
- Let g be generic, we write

$$A_g = \bigcup \{p[T]^{V[g]} : A = p[T]^V \}.$$

Definition

Let $A \subset \mathbb{R}$ be universally Baire and M be a countable transitive model of ZFC. M is A-closed if for every partial order $P \in M$ and every V-generic $g \subset P$, we have

$$V[g] \models M[g] \cap A_g \in M[g].$$

- Suppose A is universally Baire. Then A has a canonical interpretation in every generic extension.
- Let g be generic, we write

$$A_g = \bigcup \{p[T]^{V[g]} : A = p[T]^V \}.$$

Definition

Let $A \subset \mathbb{R}$ be universally Baire and M be a countable transitive model of ZFC. M is A-closed if for every partial order $P \in M$ and every V-generic $g \subset P$, we have

$$V[g] \models M[g] \cap A_g \in M[g].$$

Definition

Let $A \subset \mathbb{R}$ be universally Baire and M be a countable transitive model of ZFC. M is strongly A-closed if for every generic extension N of M, $A \cap N \in N$.

J. P. Aguilera (TU Vienna)

Suppose there is a proper class of Woodin cardinals. We write

 $T\vdash_\Omega \phi$

if there is a universally Baire set $A \subset \mathbb{R}$ such that whenever M is a (strongly) A-closed countable transitive set, we have

$$M\models ``T\models_\Omega\phi."$$

Suppose there is a proper class of Woodin cardinals. We write

 $T\vdash_\Omega \phi$

if there is a universally Baire set $A \subset \mathbb{R}$ such that whenever M is a (strongly) A-closed countable transitive set, we have

$$M\models ``T\models_\Omega\phi."$$

Theorem (Woodin)

Suppose there is a proper class of Woodin cardinals. Then Ω -provability is sound with respect to Ω -validity.

Suppose there is a proper class of Woodin cardinals. We write

 $T\vdash_\Omega \phi$

if there is a universally Baire set $A \subset \mathbb{R}$ such that whenever M is a (strongly) A-closed countable transitive set, we have

$$M\models ``T\models_\Omega\phi."$$

Theorem (Woodin)

Suppose there is a proper class of Woodin cardinals. Then Ω -provability is sound with respect to Ω -validity.

• The converse is known as the Ω -conjecture.

$\Omega\text{-Logic}$

A useful characterization of A-closure:

Definition

Let $A \subset \mathbb{R}$ be universally Baire. The term relation for A is defined by

$$\tau_{\mathcal{A}}^{\infty} = \{ (\boldsymbol{p}, \sigma, \gamma) : \boldsymbol{p} \Vdash_{\mathsf{coll}(\omega, \gamma)}^{\boldsymbol{V}} \sigma \in \mathcal{A}_{g} \}.$$

A useful characterization of A-closure:

Definition

Let $A \subset \mathbb{R}$ be universally Baire. The term relation for A is defined by

$$\tau_{A}^{\infty} = \{ (\boldsymbol{p}, \sigma, \gamma) : \boldsymbol{p} \Vdash_{\mathsf{coll}(\omega, \gamma)}^{\boldsymbol{V}} \sigma \in A_{g} \}.$$

Lemma (Woodin)

Let $A \subset \mathbb{R}$ be universally Baire and M be a transitive model of ZFC. The following are equivalent:

M is A-closed;

$$2 \ \tau_A^{\infty} \cap b \in M \text{ for all } b \in M.$$

• We need a notion of *A-iterability*. Roughly, *M* is strongly *A*-iterable if it has a universally Baire iteration strategy shifting the term relation to itself.

• We need a notion of *A-iterability*. Roughly, *M* is strongly *A*-iterable if it has a universally Baire iteration strategy shifting the term relation to itself.

We can now introduce the large-cardinal notion we will use:

Definition

Let $A \subset \mathbb{R}$ be universally Baire. An A-model is a strongly A-closed, strongly A-iterable countable transitive model of ZFC with a measurable Woodin cardinal.

Long games

We can now state a generalized version of the theorem from the first slide.

Definition

Let $A \subset \mathbb{R}$ be universally Baire. A set $X \subset 2^{\omega_1}$ is Ω -provably $\Delta_1(A)$ if there are Σ_1 -formulae in the language of set theory, ϕ and ψ , such that the following hold:

•
$$X = \{ f \in 2^{\omega_1} : \phi(f, A) \}$$
, and

Long games

We can now state a generalized version of the theorem from the first slide.

Definition

Let $A \subset \mathbb{R}$ be universally Baire. A set $X \subset 2^{\omega_1}$ is Ω -provably $\Delta_1(A)$ if there are Σ_1 -formulae in the language of set theory, ϕ and ψ , such that the following hold:

•
$$X = \{ f \in 2^{\omega_1} : \phi(f, A) \}$$
, and

2 ZFC
$$\vdash_{\Omega} \forall f \in 2^{\omega_1} (\phi(f, A) \leftrightarrow \neg \psi(f, A)).$$

Theorem

Let X be Ω -provably $\Delta_1(A)$ for some $A \in \Gamma^{\infty}$. Suppose that

- there is a proper class of Woodin cardinals,
- 2) for all universally Baire $A \subset \mathbb{R}$, there is an A-model, and
- the Continuum Hypothesis holds.

Then X is determined.

26

Long games

We can now state a generalized version of the theorem from the first slide.

Definition

Let $A \subset \mathbb{R}$ be universally Baire. A set $X \subset 2^{\omega_1}$ is Ω -provably $\Delta_1(A)$ if there are Σ_1 -formulae in the language of set theory, ϕ and ψ , such that the following hold:

•
$$X = \{ f \in 2^{\omega_1} : \phi(f, A) \}$$
, and

2 ZFC
$$\vdash_{\Omega} \forall f \in 2^{\omega_1} (\phi(f, A) \leftrightarrow \neg \psi(f, A)).$$

Theorem

Let X be Ω -provably $\Delta_1(A)$ for some $A \in \Gamma^{\infty}$. Suppose that

- there is a proper class of Woodin cardinals,
- 2) for all universally Baire $A \subset \mathbb{R}$, there is an A-model, and
- the Continuum Hypothesis holds.

Then X is determined.

26

The following is immediate:

Corollary

Let X be $\Delta_1(A)$ in every generic extension, for some fixed $A \in \Gamma^{\infty}$. Suppose that

- there is a proper class of Woodin cardinals,
- 2 for all universally Baire $A \subset \mathbb{R}$, there is an A-model,
- 3 the Continuum Hypothesis holds,
- the Ω -conjecture holds.

Then X is determined.

Black box

The theorem is proved using the following "determinacy Black Box," which in turn is proved by closely following Neeman's proof of open/Borel determinacy for games of length ω_1 .

Black box

The theorem is proved using the following "determinacy Black Box," which in turn is proved by closely following Neeman's proof of open/Borel determinacy for games of length ω_1 .

Theorem

Let $A \subset \mathbb{R}$ be universally Baire and $X = \{f \in 2^{\omega_1} : \phi(f, \omega_1, A)\}$ be a game of length ω_1 . Suppose that

- for all universally Baire $B \subset \mathbb{R}$, there is a B-model, and
- *there is a proper class of Woodin cardinals.*

Then, there is a universally Baire $B \subset \mathbb{R}$ such that whenever M is a B-model, one of the following holds:

- There is a strategy σ for Player I in X such that whenever f ∈ V is by σ, f is won by Player I in a generic extension of an iterate of M that correctly computes ω₁; or
- Such a strategy exists for Player II.

A set $X \subset 2^{\omega_1}$ is open if there is a formula ϕ such that

$$X = \{ f \in 2^{\omega_1} : \exists \alpha < \omega_1 \left(L_{\omega_1}[f] \right) \models \phi(f \restriction \alpha) \}.$$

э

A B < A B </p>

A set $X \subset 2^{\omega_1}$ is open if there is a formula ϕ such that

$$X = \{ f \in 2^{\omega_1} : \exists \alpha < \omega_1 \left(L_{\omega_1}[f] \right) \models \phi(f \restriction \alpha) \}.$$

Theorem (Neeman)

Suppose there is a countable, iterable model of ZFC with a measurable Woodin cardinal and let X be open. Then X is determined.

Conjecture

The following are (Ω -)equivalent over ZFC + CH + proper class of Woodin limits of Woodin cardinals:

- Open determinacy for games of length ω_1 ;
- **2** Provably- $\Delta_1(\mathbb{R})$ -determinacy for games of length ω_1 .

Black box

We mention additional consequences of the Black Box. First, we note the following lightface version:

Theorem

Let $X = \{f \in 2^{\omega_1} : \phi(f, \mathbb{R})\}$ be a game of length ω_1 . Suppose that M is a countable, iterable model with a measurable Woodin cardinal. Then, one of the following holds:

- There is a strategy σ for Player I in X such that whenever f ∈ V is by σ, f is won by Player I in a generic extension of an iterate of M that correctly computes ω₁; or
- Such a strategy exists for Player II.

Black box

We mention additional consequences of the Black Box. First, we note the following lightface version:

Theorem

Let $X = \{f \in 2^{\omega_1} : \phi(f, \mathbb{R})\}$ be a game of length ω_1 . Suppose that M is a countable, iterable model with a measurable Woodin cardinal. Then, one of the following holds:

- There is a strategy σ for Player I in X such that whenever f ∈ V is by σ, f is won by Player I in a generic extension of an iterate of M that correctly computes ω₁; or
- Such a strategy exists for Player II.
- The two theorems from the first slide follow easily from the Black Box.

17 / 26

Black box

We mention additional consequences of the Black Box. First, we note the following lightface version:

Theorem

Let $X = \{f \in 2^{\omega_1} : \phi(f, \mathbb{R})\}$ be a game of length ω_1 . Suppose that M is a countable, iterable model with a measurable Woodin cardinal. Then, one of the following holds:

- There is a strategy σ for Player I in X such that whenever f ∈ V is by σ, f is won by Player I in a generic extension of an iterate of M that correctly computes ω₁; or
- Such a strategy exists for Player II.
- The two theorems from the first slide follow easily from the Black Box.
- Here (and before) there could be other parameters in the definition of X, but they will be shifted by the embeddings.

J. P. Aguilera (TU Vienna)

 $(\Omega$ -)Provably Δ_1 Games

Theorem

Let $A \in \Gamma^{\infty}$. Suppose that

- there is a proper class of Woodin cardinals,
- **2** for all universally Baire $A \subset \mathbb{R}$, there is an A-model.

Let

$$X = \{ f \in 2^{\omega_1} : (L[f][\tau_A^{\infty}], f, \tau_A^{\infty}) \models \phi(f, A) \};$$

then X is determined.

3

Applications

We prove the lightface version, which is easier:

Theorem

Suppose that there is a sharp for a countable, iterable model M with a measurable Woodin cardinal. Let

$$Y = \{f \in 2^{\omega_1} : (L[f], f) \models \phi(f, \omega_1)\};$$

then Y is determined.

Applications

We prove the lightface version, which is easier:

Theorem

Suppose that there is a sharp for a countable, iterable model M with a measurable Woodin cardinal. Let

$$Y = \{f \in 2^{\omega_1} : (L[f], f) \models \phi(f, \omega_1)\};$$

then Y is determined.

Proof. Let

$$X = \{f \in 2^{\omega_1} : (L_{\kappa}[f], f) \models \phi(f, \omega_1)\},\$$

where κ is the critical point of the topmost measure of M^{\sharp} . Let

$$X^{M} = \{ f \in 2^{\omega_{1}} : (L_{\kappa}[f], f) \models \phi(f, \delta) \},\$$

where δ is the measurable Woodin. Thus X^M is defined from δ and κ as parameters.

J. P. Aguilera (TU Vienna)

Applying the Black Box to X^M , we obtain one of the following:

- There is a strategy σ ∈ V for Player I in X^M such that whenever f ∈ V is by σ, f is won by Player I in a generic extension of an iterate of M that correctly computes ω₁; or
- Such a strategy exists for Player II.

Applying the Black Box to X^M , we obtain one of the following:

- There is a strategy σ ∈ V for Player I in X^M such that whenever f ∈ V is by σ, f is won by Player I in a generic extension of an iterate of M that correctly computes ω₁; or
- Such a strategy exists for Player II.

Suppose the former holds and let f be by σ . Thus, there is a model N of ZFC, an elementary embedding $j : M \to N$, and an N-generic filter g such that $f \in N[g]$ and

$$N[g] \models f \in \{f \in 2^{\omega_1} : (L_{j(\kappa)}[f], f) \models \phi(f, j(\delta))\}.$$

• By the proof of the Black Box, $j(\delta) = \omega_1$.

æ

- By the proof of the Black Box, $j(\delta) = \omega_1$.
- By elementarity, j(κ) is the critical point of the topmost measure of N[#] and, since large cardinals are preserved by small forcing, it is the critical point of a N[g]-measure.

- By the proof of the Black Box, $j(\delta) = \omega_1$.
- By elementarity, j(κ) is the critical point of the topmost measure of N[#] and, since large cardinals are preserved by small forcing, it is the critical point of a N[g]-measure.
- Let N_{∞} be the set-like part of the class-sized iterated ultrapower of N[g] by the measure. Thus,

$$N_{\infty} \models f \in \{f \in 2^{\omega_1} : (L[f], f) \models \phi(f, \omega_1^V)\}.$$

- By the proof of the Black Box, $j(\delta) = \omega_1$.
- By elementarity, j(κ) is the critical point of the topmost measure of N[#] and, since large cardinals are preserved by small forcing, it is the critical point of a N[g]-measure.
- Let N_{∞} be the set-like part of the class-sized iterated ultrapower of N[g] by the measure. Thus,

$$N_{\infty} \models f \in \{f \in 2^{\omega_1} : (L[f], f) \models \phi(f, \omega_1^V)\}.$$

It follows that

$$(L[f],f) \models \phi(f,\omega_1^V),$$

as desired.

We mention a final application of the Black Box. The proof follows that of Woodin's theorem from the second slide.

Theorem

Suppose there is a sharp for a model with a measurable Woodin cardinal and that the Continuum Hypothesis holds. Then, there is a class-sized transitive model M of ZFC containing \mathbb{R} such that if X is a game of length ω_1 definable from \mathbb{R} and real and ordinal parameters, then

 $M \models$ "X is determined."

We mention a final application of the Black Box. The proof follows that of Woodin's theorem from the second slide.

Theorem

Suppose there is a sharp for a model with a measurable Woodin cardinal and that the Continuum Hypothesis holds. Then, there is a class-sized transitive model M of ZFC containing \mathbb{R} such that if X is a game of length ω_1 definable from \mathbb{R} and real and ordinal parameters, then

 $M \models$ "X is determined."

Proof. We construct a model M in which all games of length ω_1 definable from \mathbb{R} are determined. Using standard techniques, one can then find a model in which all games definable from ordinal and real parameters, together with \mathbb{R} , are determined.

• Let N be a countable model of ZFC with a measure on a cardinal greater than a measurable Woodin cardinal and let Σ be an iteration strategy for N. Let $\{s_{\alpha} : \alpha < \omega_1\}$ be an enumeration of \mathbb{R} .

- Let N be a countable model of ZFC with a measure on a cardinal greater than a measurable Woodin cardinal and let Σ be an iteration strategy for N. Let $\{s_{\alpha} : \alpha < \omega_1\}$ be an enumeration of \mathbb{R} .
- Recursively, we define a sequence of reals $\{r_{\alpha} : \alpha < \omega_1\}$ such that:
 - r_0 codes N and s_0 ;
 - ② if 0 < α, then r_α codes s_α, together with Σ restricted to all countable iteration trees in L[⟨r_β : β < α⟩].</p>

- Let N be a countable model of ZFC with a measure on a cardinal greater than a measurable Woodin cardinal and let Σ be an iteration strategy for N. Let $\{s_{\alpha} : \alpha < \omega_1\}$ be an enumeration of \mathbb{R} .
- Recursively, we define a sequence of reals $\{r_{\alpha}: \alpha < \omega_1\}$ such that:
 - $I r_0 codes N and s_0;$
 - ② if 0 < α, then r_α codes s_α, together with Σ restricted to all countable iteration trees in L[⟨r_β : β < α⟩].</p>
- Let $M = L[\langle r_{\beta} : \beta < \omega_1 \rangle]$. The following hold:
 - $N \in H(\omega_1)^M,$
 - 2 In *M*, there is an ω_1 -iterable model with a measurable Woodin cardinal,
 - **(3)** $\mathbb{R} \subset M$ and the Continuum Hypothesis holds in M.

- Let N be a countable model of ZFC with a measure on a cardinal greater than a measurable Woodin cardinal and let Σ be an iteration strategy for N. Let $\{s_{\alpha} : \alpha < \omega_1\}$ be an enumeration of \mathbb{R} .
- Recursively, we define a sequence of reals $\{r_{\alpha}: \alpha < \omega_1\}$ such that:
 - $I r_0 \text{ codes } N \text{ and } s_0;$
 - ② if 0 < α, then r_α codes s_α, together with Σ restricted to all countable iteration trees in L[⟨r_β : β < α⟩].</p>
- Let $M = L[\langle r_{\beta} : \beta < \omega_1 \rangle]$. The following hold:
 - $I \in H(\omega_1)^M,$
 - 2 In *M*, there is an ω_1 -iterable model with a measurable Woodin cardinal,
 - **(3)** $\mathbb{R} \subset M$ and the Continuum Hypothesis holds in M.
- We claim that all definable games are determined in M.

• Otherwise, let $X = \{f \in 2^{\omega_1} : \phi(f, \mathbb{R})\}$ be non-determined and define a game Y as follows:

3

- Otherwise, let $X = \{f \in 2^{\omega_1} : \phi(f, \mathbb{R})\}$ be non-determined and define a game Y as follows:
- In Y, Players I and II take turns. At stage ι , Player I plays a pair of reals $(f_0(\iota), f_1(\iota))$, and Player II plays a pair $(f_2(\iota), f_3(\iota))$. This defines four functions, f_0 , f_1 , f_2 , f_3 . Let f code them all and let $f_0 \oplus f_2$ code f_0 and f_2 . We set

$$Y = \{f \in 2^{\omega_1} : (L[f], f) \models \phi(f_0 \oplus f_2, \mathbb{R})\}.$$

$$Y = \{f \in 2^{\omega_1} : (L[f], f) \models \phi(f_0 \oplus f_2, \mathbb{R})\}.$$

3

<ロ> (日) (日) (日) (日) (日)

$$Y = \{f \in 2^{\omega_1} : (L[f], f) \models \phi(f_0 \oplus f_2, \mathbb{R})\}.$$

 $\sigma^*(f_2) = f_0$ if, and only if, $\exists f_1 \in M \sigma(f_2, \langle r_\beta : \beta < \omega_1 \rangle) = (f_0, f_1).$

$$Y = \{f \in 2^{\omega_1} : (L[f], f) \models \phi(f_0 \oplus f_2, \mathbb{R})\}.$$

 $\sigma^*(f_2) = f_0$ if, and only if, $\exists f_1 \in M \sigma(f_2, \langle r_\beta : \beta < \omega_1 \rangle) = (f_0, f_1).$

 To every play (f₀, f₂) by σ* corresponds a play (f₀, f₁, f₂, f₃) by σ which is won by Player I, so, by definition,

 $(f_0, f_1, f_2, f_3) \in \{f \in 2^{\omega_1} : (L[f], f) \models \phi(f_0, f_2, \mathbb{R})\}.$

$$Y = \{f \in 2^{\omega_1} : (L[f], f) \models \phi(f_0 \oplus f_2, \mathbb{R})\}.$$

 $\sigma^*(f_2) = f_0$ if, and only if, $\exists f_1 \in M \sigma(f_2, \langle r_\beta : \beta < \omega_1 \rangle) = (f_0, f_1).$

 To every play (f₀, f₂) by σ* corresponds a play (f₀, f₁, f₂, f₃) by σ which is won by Player I, so, by definition,

 $(f_0, f_1, f_2, f_3) \in \{f \in 2^{\omega_1} : (L[f], f) \models \phi(f_0, f_2, \mathbb{R})\}.$

• But
$$L[f] = M$$
, so $M \models \phi(f_0, f_2, \mathbb{R})$.

$$Y = \{f \in 2^{\omega_1} : (L[f], f) \models \phi(f_0 \oplus f_2, \mathbb{R})\}.$$

 $\sigma^*(f_2) = f_0$ if, and only if, $\exists f_1 \in M \sigma(f_2, \langle r_\beta : \beta < \omega_1 \rangle) = (f_0, f_1).$

 To every play (f₀, f₂) by σ* corresponds a play (f₀, f₁, f₂, f₃) by σ which is won by Player I, so, by definition,

 $(f_0, f_1, f_2, f_3) \in \{f \in 2^{\omega_1} : (L[f], f) \models \phi(f_0, f_2, \mathbb{R})\}.$

• But L[f] = M, so $M \models \phi(f_0, f_2, \mathbb{R})$.

• Therefore, σ^* is a winning strategy for I. The other case is similar.

Thank you.

3

æ